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Theoretical fundamentals of the method to determine thermal diffusivity from 
auto-oscillation parameters in a control system, CS, with thermal feedback 
through the test specimen, are developed. The equation of a CS with a flat 
specimen and proportional controller (nonlinear boundary value problem of 
nonstationary heat conduction) is considered. Periodic solutions of the 
boundary value problem, which is linearized in the vicinity of the stationary 
solution, are analyzed. It is proved that, with a certain value of CS gain factor, 
excitation of auto-oscillations occurs. Their frequency ~o c is related to the 
thermal diffusivity ~ as ~ = C~c, where C is constant. By nonlinear analysis, it 
is revealed that the auto-oscillation excitation mode is soft and the frequency 
depends on the gain factor to a very weak degree. Formulas for calculation of 
the thermal diffusivity and the specimen temperature fietd are obtained. 

KEY WORDS: auto-oscillations; nonlinear analysis; temperature wave; 
thermal diffusivity; thermal feedback. 

1. I N T R O D U C T I O N  

T h e  pu l se  m e t h o d  a n d  the  m e t h o d  of  t e m p e r a t u r e  waves  [-1, 2 ]  a re  the  

m o s t  w i d e s p r e a d  ways  to  m e a s u r e  t h e r m a l  diffusivi ty  b u t  t hey  h a v e  ce r t a in  

d i s advan t ages .  I n  the  pu l se  m e t h o d ,  the  en t i re  k n o w l e d g e  o f  the  t h e r m a l  

diffusivi ty is c o n t a i n e d  in the  shape  o f  the  t e m p e r a t u r e  r e sponse  curve.  

C o n s e q u e n t l y ,  the  r e c o r d i n g  faci l i t ies  h a v e  to  r e p r o d u c e  this  shape  as 

a c c u r a t e l y  as possible .  T h e  d i s a d v a n t a g e  o f  the  t e m p e r a t u r e  w a v e  t e c h n i q u e  

is t ha t  the  phase  shift  o r  the  a m p l i t u d e  r a t io  o f  t e m p e r a t u r e  osc i l l a t ions  at  
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two different points of a specimen has to be measured. In both cases, rather 
complicated instruments to achieve acceptable accuracy [3] have to 
be used. However, there is one more thermal diffusivity-dependent 
parameter--frequency, the measurement of which is easier and more 
accurate. 

In the method proposed in this paper, the signal phase shift in the test 
specimen is invariable and equal to rt, while the frequency of temperature 
oscillations depends on the thermal diffusivity of the specimen and can be 
measured with a high precision. The test specimen is an element of the 
thermal feedback in a control system, CS, where the phase delay takes 
place only in the specimen, and so the oscillations are excited at the 
frequency at which the phase shift in the specimen is 7r. The shift in an 
entire feedback loop is 2g because of the signal inversion in the controller. 

The CS may lose stability if any one of its parameters changes in a 
particular way [4]. Such a parameter is referred to as bifurcational and its 
value at which stability is lost is referred to as critical. For certain kinds of 
system nonlinearity, the loss of stability may result in auto-oscillations with 
an amplitude ~(e) at frequency co(e), where e = ( A -  A c ) / A  o is the relative 
departure of the generalized gain factor A, which depends on the bifurca- 
tional parameter, from its critical value Ac. This excitation mode is referred 
to as soft; ~(e) tends to zero and co(e) to its critical value co~ as e--* 0. 

If in a CS, whose feedback loop includes the test speciman, the soft 
mode is possible, auto-oscillations can be excited by varying A from zero 
to its critical value Ar By measuring the auto-oscillation frequency, the 
thermal diffusivity of the test specimen can be obtained. The formula for 
calculation of the thermal diffusivity can be derived through analyzing the 
CS equation by asymptotic methods, which also yield the range 0 < e < eo 
where the system may be regarded as linear, within the desired accuracy, 
and the relationship among the thermal diffusivity a, the frequency of the 
linear system cor and the geometrical parameter C is the most simple: 

a =  Ccoc (1) 

The method and its applications have been described previously [-5], 
where the equation of the thermophysical CS was analyzed and Eq. (1) was 
obtained. The auto-oscillation excitation mode was not discussed. It was 
reported that a gradual reduction of the auto-oscillation amplitude to zero 
as e--* 0, which is characteristic o f a  soft mode, and a weak dependence 
co = co(e) were observed. Consequently, in the zeroth approximation, the 
experimental auto-oscillation frequency co(E) was assumed to be equal to 
coc and so Eq. (1) became applicable. 

The present paper is devoted to further analysis of the problem 
formulated earlier [5] preceded by a more thorough statement of the 
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problem and linear analysis. In the section dealing with nonlinear analysis, 
the algorithm of the method is described in detail and the auto-oscillation 
excitation mode is shown to be really soft, while the frequency is weakly 
dependent on e. 

2. S T A T E M E N T  OF THE P R O B L E M  

A thermophysical CS can be obtained in numerous combinations of 
the test specimen shape, controller type, and boundary conditions, but 
auto-oscillations cannot be excited in all systems. Nevertheless, the algo- 
rithm of analysis of these different systems is the same and will be 
demonstrated for the most simple problem: CS with a flat specimen and a 
proportional controller. The system, shown in Fig. 1, consists of test 
specimen 1, thermostat2, differential thermocouple 3, variable reference 
voltage source 4, amplifier 5, and heater 6. The test specimen is in thermal 
contact with the thermostat and heater, which generates a one-dimensional 
heat flux. One of the thermocouple's junctions is inside the specimen at 
point x0 and the other is on the surface being thermostated, x=0 .  The 
thermocouple signal is fed to the inverting input of the amplifier, whose 
other input is connected to the reference voltage source, and the output, to 
the heater. The test specimen, thermocoupte, reference voltage source, 
amplifier, and heater make a closed-loop CS. The equation of this system 

_L 

X j 6  

~0 

0 / 2  

Fig. 1. A control system with a proportional controller 
and a fiat specimen: 1, test specimen: 2, thermostat;  
3, differential thermocouple; 4, reference voltage source; 
5, controller; 6, heater. 
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is derived by eliminating intermediate variables b/l, U2, and q from 
equations of CS elements 

Ul = ~T(xo,  t), thermocouple, '~ 

t 

u2 = K(uo - Ul), controller, 

q = u~a(u2)/SR, heater, 

T(x, t ) =  aT"(x ,  t), specimen 

T(x,  t ) lx :o=0;  2T ' (x ,  t ) l x=~=q  

(2) 

The symbols are defined under Nomenclature, at the end of the paper. The 
system acquires the form of a nonlinear boundary value problem, 

J'(x, t ) =  a T ' ( x ,  t) ) 

T(x, t)l x = o -- 0 

2T'(x, t)l  x = 6  = (K2/gR)Euo- ~T(xo, t ) ]  2 ~ E u 0  - ~T(xo, t ) ]  

(3) 

As a rule, T(x,  t) is within 1 or 2 K, so the linear approximation for the 
thermocouple relation in Eq. (2) is sufficient. 

In fact, analysis of the CS equation amounts to solving a nonlinear 
problem of nonstationary heat conduction, which is done in two stages. 
First, solution of the linearized problem expressed by Eq. (3) is examined, 
then the problem is subjected to nonlinear analysis. 

3. L I N E A R  A N A L Y S I S  

Let us linearize the problem expressed by Eq. (3) in the vicinity of its 
stationary solution. We shall concentrate on periodic solutions of the 
linearized problem, because a can be determined from the parameters of 
stable auto-oscillations only. These solutions are obtained by the Fourier 
method; their spatial parts will be the eigenfunctions of some operator. The 
eigenvalues of this operator will be the squared wavenumbers of the 
temperature waves excited in the specimen. Solving the problem for the 
eigenvalues, we arrive at Eq. (1), which relates the auto-oscillation 
frequency to the thermal diffusivity of the test specimen. We solve the 
problem expressed by Eq. (3) as a sum of steady-state T(x) and periodic 
T(x, t) solutions T(x, t) = T(x)  + T(x, t). The steady-state solution is 

T(x)  = (Uo/~Xo)[D• 2 -- 1)1/2]x 

where D = 1 + 2SR/2flUoXo K2 (4 )  
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Of the two solutions of Eq. (4), we choose the one for which the Heaviside 
function's argument is positive, 

•[Uo - /~T(x0)]  = 1, Uo >/~T(Xo) (5) 
i.e., 

T= (Uo/flXo)[D - (D 2 -  1)i/2J x (6) 

Linearizing the problem expressed by Eq. (2) in the vicinity of the station- 
ary solution given by Eq. (6), i.e., neglecting terms in ~2, we have 

~'(x, t)= a1""(x, t) ) 

2ilK 2 
~'(x, t ) lx=o=0,  T'(x, t)lx=6 = 2SR [u~176 ~(x~ t) (7) 

After substitution of Eq. (6) to the boundary condition of Eq. (7), the latter 
acquires the form 

~ , , ( x , t ) ] x=6 =[ l _ x / ( D +l ) / ( D _ l ) ]T ( xo ,  t) A T(xo, t) (8) 
X 0 Xo 

Parameter A = 1 -  [(D + 1 ) / (D-  1)] 1/2 depends on the system parameters 
determining the gain of the entire feedback loop. Two of the parameters 
buried in A, the reference voltage u 0 and the amplifier gain K, are variables. 
An auto-oscillation can be excited by varying either of them from zero to 
their critical value. According to the above-mentioned terminology, A is a 
generalized gain factor, while Uo and K are bifurcational parameters. 
Expressing D from A = 1 - [(D + 1 ) / (D-  1 )] 1/2 and substituting to Eq. (6) 
we obtain 

where A=l-[ l+4f lXo(uoKZ) /2SR]  1/2 depends on both bifurcational 
parameters. It is easy to see that the excitation of auto-oscillation by 
u o adjustment is hardly possible, as it would result in T(x) increase to 
unpredictable limit. On the contrary, K is a very convenient parameter 
for auto-oscillation excitation and control of their amplitude. Though T(x) 
increases together with K, it never exceeds a certain limit T(x)=  UoX/flXo. 

The nonstationary solution of the problem (7) will be tried as 
T(x, t)= V(x)exp(akZt). Its spatial part, V(x), is the eigenfunction of the 
operator 

v"(x) = k2V(x) ) 

A t (10) V(x)lx_o=O, V'(x)lx=~- V(xo) 
No 
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It is obvious that the operator in Eq. (10) has a digital spectrum of 
eigenfunctions, 

Vj(x) = Cj sh(kjx) (11) 

and eigenvalues kj satisfying the latter boundary condition of the operator 
in Eq. (10), 

kxo ch(kS)= A sh(kxo ) (12) 
X 0 

The roots of Eq. (12) depend on A, which varies from 0 to - 0 o  with K 
being varied from 0 to ~ .  The investigation of the roots of Eq. (12) in a 
complex plane reveals that with A = 0 all roots are imaginary, i.e., k~ are 
real and negative. The corresponding nonstati0nary solution describes tem- 
perature relaxation from its initial distribution to steady-state T(x)= 0. 
With K increase (A decrease), the pairs of roots start moving toward each 
other along an imaginary axis. With a certain A(K) value the first pair (we 
enumerate them in the increasing order kj<kj+l) collapses and goes on 
moving in a complex plane as a single complex root k'l + ik~'. As soon as 
it leaves the imaginary axis, the convergent periodic solution 

T~(x, t ) =  C a sh(kl + iki')x exp[a(kl:-ki '2)tJexp(i2k' lk ' l 'a t)  (13) 

appears. Further K increase results in a dominant k] over k'l' increase and 
a respective k~ 2-z''2,~ reduction, until k] =k'l' = k l  and a stable periodic 
solution; 

T(x, t) = C sh(1 + i)klx exp(i2ak~t) (14) 

is established. The values of K =  K c and A = Ac that correspond to the 
condition k] = k~' = kl are defined as "critical." In the supercritical domain 
when A < A~ the diverging solution appears due to k] > kl' and the linear 

�9 analysis based on the assumption T(xo, t ) ~ 2 [ u o / f l - T ( x o ) ]  is no longer 
valid. 

The solution given by Eq. (14) implies that a is related to the 
oscillation frequency of the linear system coc as 

a=~oo/2k~ (15) 

To obtain the equation for k~ calculation, let us substitute (1 +i)k in 
Eq. (12). Introducing notations v=k6, ~1 =xo/6, and separating the real 
and imaginary parts of Eq. (12), we have 

qv(ch v cos v - shv sin v) = Ash  t/v cos qv 
(16) 

qv(ch v cos v + shv sin v) = A ch t/v sin qv 
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Eliminating the parameter A in Eq. (16), we obtain an equation for 
eigenvalues of operator (10), 

c h v c o s v + s h v s i n v  c h v c o s v - s h v s i n v  
- (17)  

ch ~/v sin r/v sh qv cos rlv 

It is easy to see that k is a wavenumber of temperature wave, while 
k l ( 6 - X o ) = V l ( 1 - q )  is a phase delay of harmonic feedback signal in a 
specimen. The complicated form of the phase condition expressed by 
Eq. (17) is the result of superposition of two temperature waves running to 
and reflected from the thermostat. If the reflected wave buried in Eq. (14) 
is neglected, then T(x, t) = (C/2) exp(klx ) exp i((~t+klx ) and Eq. (17) 
reduces to 

tg(1 - r/)v = - 1  (18) 

which implies that phase delay in a specimen (1 -r/)Vl = 3rc/4. The residual 
of phase delay 2 7 z - ( 1 - r / ) v  1 is distributed between controller n, as it 
inverts the feedback signal, and heater ~/4, whose temperature oscillation 
T(6, t) delays from that of power q(t). 

The thermal diffusivity can be obtained from Eq. (15) by measuring 
the auto-oscillation frequency ~o(e) of the CS within 0 < e < 1, i.e., when the 
system nonlinearity is a priori small and og(e) = 09~ The wavenumber k~ for 
a specified r/is found from numerical solution of Eq. (17), while the corre- 
sponding critical value A c is obtained by k~ substitution to any of Eqs. (16). 
Figure 2 displays the dependences Vl(r/) and Ac (r/) in the span 0.1 ~<r/~< 
0.9. With q--}0, Eq. (17) tends to the form sh(v)sin(v)=0, hence v ~ z  
and A o ~  -11.5920. As with the thermocouple being approached to the 
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on thermocouple position q. 
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heater ( t /~  1), the root v 1 tends to infinity, to satisfy the phase condition 
(q-1)vl=3rc/4, so does the autooscillation frequency. With respect to 
short temperature wave intensive decay, the generalized gain Ac should 
decrease with i / ~  1 as shown in Fig. 2. At r/= 1 the auto-oscillations 
cannot be excited by any means; thus the utilization for this purpose of a 
thermal probe (heater and thermocouple joined together) in combination 
with a proportional controller is impossible. In our experiments the 
thermocouple was fixed in the middle of the specimen: t/= 0.5; vl = 4.6941; 
and Ao = -34.6915. 

The thermal diffusivity measuring procedure consists of the following 
stages. First, auto-oscillations are excited by gradualy increasing K, while 
u0 is fixed. Then, with adjustment of Uo, the desired temperature gradient 
[see Eq. (9)] is obtained. Finally, the temperature oscillation amplitude is 
established by fine regulation of K. If the temperature dependence of the 
thermal diffusivity a(T) has to be measured, the most convenient way is to 
raise the temperature of the thermostat monotonically, with simultaneous 
recording of the temperature oscillations. The only experimental parameter, 
coc (or oscillation period), required for the a calculation is obtained as the 
ratio of the time span containing an integer number of oscillations: the 
number of oscillations. 

4. NONLINEAR ANALYSIS 

As noted above with A<Ao (A always <0) the exponent index 
k'i 2 -  k~ '2 in Eq. (13) changes sign and an exponentially increasing solution 
appears. This would result in an infinite increase in the oscillation 
amplitude, but this does not occur because of the constraining effect of the 
real system nonlinearity. As the root of Eq. (12) moves in a complex plane, 
its imaginary, as well as its real part, varies so that o)r c. If the 
autooscillation excitation mode is soft, then, as e increases, so does the 
difference between the experimental frequency co(e) and co c, and the 
applicability range of Eq. (15) has to be questioned: We stress that this 
question is valid only in the case of a soft oscillation excitation mode. Let 
us show that the mode is soft indeed and derive the relationship between 
a and on(e), 

For this purpose the nonstationary part of the problem expressed by 
Eq. (3) is represented in the form 

IV(x, t)=aW'(x, t) "] 

W(x, t)lx=~ =0  t (19) 

A (1 + e) W(xo, t) + WZ(xo, t) W'(x, t)lx=  = Xo 
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where e=(A-Ac) /Ac is the relative departure of A from Ao; W(x, t ) =  
(K2~2/2SR) T(x, t). Assume also that 

t = ( l + c ) ~ ;  C = C 2 ~ 2 " ~ - C 4 ~ 4 - J ~  - " ' ' ;  ~ ; = b 2 ~ 2 + b 4 ~ 4 +  "-" 
(20) 

W(x, ~) = ~wl(x, ~) + ~2W2(x, ~) + ... 

where ~ is the amplitude of the linear term and W2, W3,... are tri- 
gonometric polynomials with x-dependent coefficients. The function W2,, 
contains only even harmonics whose ordinal number does not exceed 2n, 
while W2, +1 contains only odd harmonics. 

Substituting Eq. (20) into Eq. (19) and equating the expressions with 
identical powers of 4, we have a sequence of linear inhomogeneous bound- 
ary value problems for determining the unknown functions W2, W3 .... and 
constants c2, c4 . . . .  and b2, b4 .... The unknown functions W, are determined 
recurrently by solving these boundary value problems, while the constants 
c2n and b2n are determined at the 2n + 1st step of the algorithm from condi- 
tions of resolvability in the class of trigonometric polynomials of the 
corresponding boundary value problems. If it is found that b 2 > 0, then 
with A < Ac (or with e > 0), the stable periodic solution bifurcates from the 
equilibrium state, which, over any time span of order e 1, behaves 
asymptotically as 

W(x, t) = ( e / b 2 )  I/2 [sh(1 + i)kx exp(i~or) + sh(1 - i)kx exp( - io)v)] 

+ (e/b2) W2(x, ~) + o(~ ~/2) (21) 

This is the soft auto-oscillation excitation mode: the equilibrium state 
loses stability but a stable periodic solution is obtained in its vicinity. If, 
however, b2 < 0, then a periodic solution with Eq. (21) asymptotic behavior 
exists with e>0 ,  in the precritical domain. In this case, the auto- 
oscillations acquire from the start an amplitude with which the problem is 
essentially nonlinear, and none of the asymptotic methods is applicable. 
If, however, b2 = 0, the entire reasoning is reiterated with b4, etc. 

Because it turned out that b2 > 0, let us limit the recurrent sequence of 
inhomogeneous boundary value problems to the first three, 

l/Vl(x, ~) = aW;'(x, ~) 

Wl(x, r)l ~=o = 0 I (22) 

W;(x, Z)lx=~ = (A~/xo) Wl(xo, z) 

Wz(x, z )=  aW;'(x, z) ] 

W~(x, ~)1 ~=o = 0 I (23) 
W~(x, ~)1~=~ = (Ao/xo) W~(xo, ~) + W~(Xo, ~1 
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12/3 (x , z) = aW~'(x, z) + ac2 W;'(x, z) 

W3(x, z)lx=o=0 

W~(x, T)lx=a = (Ar [ W3(xo, z) + b2 Wl(xo, z)] 

+ 2Wl(x0, r) W2(Xo, T) 

(24) 

The problem expressed by Eq. (22) is easily seen to coincide with 
Eq. (7), whose periodic solution has been discussed above. To make the 
parameters of the expansion given by Eq. (20) dimensionless, the solution 
of Eq. (22) is represented in the form 

Wl(x, z) = Wo[sh(1 + i )kx  exp(icoz) + sh(1 - i )kx  exp( -  ioJr)] (25) 

where Wo = 1 m -1. Substituting (25) in the last boundary condition of the 
problem expressed by Eq. (23), we find that the inhomogeneity contains 
the zero and second harmonics. The solution is tried in the same form as 
the inhomogeneity, W2(x, z) = P(x)  exp(i2cor) + P(x) exp(-i2coz) +.Q(x). 
As a result, we have 

e ( x )  = 

Q(x) - 

W~ sh2(1 + i)kxo shx/2(1 + i)kxo 

xf2(1 + i)k chx~(1 + i) k6 - (A~/xo) shx~(1 + i) kxo 

2W~ [-sh(1 + i) kxo sh(1 - i) kxo]x  
1 - A o  t (26) 

Substitution of Eqs. (25) and (26) in Eq. (24) produces the first and the 
third harmonics in the inhomogeneity. Assuming that W3(x,z) = 
L(x)exp(icoz) + /7(x)exp(-icoz) + M(x)exp(i3o~z) + M(x)exp(-i3coz) 
and equating the terms of identical harmonics, we obtain two problems, 

L(x)  = L"(x)/2ik 2 + c 2 Wo sh(1 + i) kx  ) 

L(x)[x=o=O 

L'(x)lx=a = (Ac/xo)[L(xo) + b2 Wo sh(1 + i) kxo] 

+ 2P(xo) Wo sh(1 - i) kx  o + 2Q(xo) w o sh(1 + i) kxo 

(27) 

M(x)  = i6k2M"(x)  ) 

M(x)l~=o=O 

M'(x)l~ =a = (Ac/xo) M(xo) + 2P(xo) Wo sh(1 + i) kx  

(28) 
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while the 

tends to zero. 

The problem expressed by Eq. (28) is always resolvable, 
condition of resolvability of Eq. (27) is 

( m  I -I- im2)c 2 4- (nl + inz)b2 -E [2/(1 - Ao) 

-- W~(ll  + il2)/(z 2 + z2)](P~ + iP2) = 0 (29) 

where 

ml = - ( v 2 / 6 )  ch vc sin vo + ( A~vo/26 )(sh qv~ sin t/v~ - ch ~/vo cos qvc) + n~ 
2 

= (v2~/6) sh vc cos v~ - (Aovc/26)(sh ~lVc sin qv~ - ch r/v~ cos qvc) + 2 m2 

nl = (A~/xo) sh t/vc cos t/vc, n 2 = (A~/xo) ch r/v~ sin qvc 

z, = x ~  q v o ( c h ~  qvo c o s ~  ~/vr x/-2 ~/vo sin x/2 ~/v~) 

-Aosh  vocosjqv  
z 2 = ~ qvr t/v~ cos x/2 ~/vo + sh~ff2 ~/vo sin xf2 ~/yc) (30) 

- Ac chx/2 t/v~ sin ~/2 ~/v~ 

P1 = 2Xo W g ( s h  2 r/v c + sin 2 qvc) sh r/v~ cos r/vo 

P2 = 2Xo WZ(sh 2 qvc + sin 2 qv~) ch qv~ sin t/v~ 

11=z. sh.5 q.o cosU,Vc + z2 chU.vc sin.5,.  
12=z,  ch x/-2 ~/Vc sinx/-2 qv ~ - z2shx/-2rlv~cos.~-2tlv ~ 

Separation of the real and imaginary parts of Eq. (29) gives c2 and b2. 
Thus for ~/= 0.5 the Lyapunov coefficients c2 and b2 take on the values 

C 2 ~ -  0.010569x0 W~, b2 = 0.066410Xo W 2, c:/b:  = 0.15915 (31) 

Hence b2 > 0, the auto-oscillation excitation mode is soft, and as e ~ 0, an 
emplitude of periodic solution, 

2U0Xo 
7"(x,t)= ~ [ D ( ~ ) - - I ] {  e x /~ z2Wo(sh2kx+s in2kx )  ~/2 

x cos[e)(e) t + ~b(x)] + Re(a/b2) 

x [P(x) exp(i2o)(e)t)  + P(x )  e x p ( - i 2 ~ o ( e ) t ) ] }  

+ o(a3/2), ~b(x)arctg(cth kx  tg kx)  (32) 



170 Rudyi 

In a real oscillating system ~ :~ 0 and the relation between ~Oc and co(e), 
which is analogous to t = (1 + c)z, in the first approximation is 

and for q = 0.5, t (33) 

co(e) = (1 + 0.15915e)~o~ ) 

Substituting for o~c in Eq. (15), we obtain the improved formula for the 
thermal diffusivity calculation: 

a = co (e ) /2k2[1  + ( c 2 / b 2 ) e ]  ) 

and for q = 0.5, t (34) 

a 2.2692 10-2c0(~)62/(1+0.15915~)) 

5. ERRORS OF THE M E T H O D  

Though relations given by Eq. (34) approximate the relation between 
a and re(e) better than Eq. (15), their practical application, requiring the A 
experimental determination, is rather useless, as the main advantages of the 
method proposed are lost. Nevertheless, these expressions permit an 
estimation of the error that is made if the experimental frequency ~o(e) is 
substituted into Eq. (15) instead of Eq. (34). Let us denote the respective 
values of thermal diffusivity ac and at. Then the error due to CS 
nonlinearity is 

Aa/a~ = (a t  - ac)/a~ = ( c2/b2)~ (35) 

The upper limit of the error can be estimated from the condition a(u2)  = 1, 

which implies that 

u2 = K [ u o  - ~ T ( X o ,  ~) - t 3T (xo ,  t, e)] > 0 )  

and for q = 0.5 l (36) 

0.05773 - 0.01926e - .,,/7 0.13525 cos ~o(e) t > 0 

Consequently e cannot exceed a certain value ~0 (Co = 0.16271 for q = 0.5) 
with which an amplitude of harmonic component /~T(xo, t, ~) is equal to 
Uo-/~T(xo, ~). The voltage fed to recording facilities is proportional to the 
so-called error signal u2, consisting of constant and alternating com- 
ponents. As both of them depend on e, the latter determines the depth of 
recording voltage modulation. We usually use 50 % modulation to guaran- 
tee stability of auto-oscillations and signal transition linearity even in the 
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case of a sudden increase in its amplitude (at specimen phase transition, for 
example). The respective value of e is referred to as optimal and can be 
evaluated from the condition of steady component Uo- f lT (xo ,  ~) equality 
to the double amplitude of alternating component flTo(xo, t, ~). Substitut- 
ing Eq. (9) and an amplitude of the first harmonic of temperature oscilla- 
tion To(x o, t, e), expressed from Eq. (32), to Uo - flT(xo, e) = 2flT(xo, t, ~), 
we obtain 

- A t ( 1  + ~) = 8Xo Wox/(e/b2)(sh 2 fly1 + sin 2 qvl) (37) 

The analogous condition for t /=  0.5 can be obtained from the second of 
Eqs. (36), relating the steady component to e more accurately than 
Eq. (37), 

0.0577 - 0.0192e : 2 x ~  0.1353 (38) 

Calculating gopt =0.0470 and substituting this value into the formula 
for error due to nonlinearity expressed by Eq. (35), we find that 
(Aa~/a) 100 % = 0.75 %. The lower limit of e depends on oscillation stability 
and sensitivity of recording instruments. Actually the modulation depth can 
be reduced to at least 10% without loss ofstability and ~o(e) measurement 
accuracy. The analysis of other systematic errors has been given in the 
literature [5].  The main contributing error Aav/a=2.07AXo/6, resulting 
from thermocouple coordinate uncertainty Axo, is essential to all contact 
temperature measurement. The total value of all other contributing errors 
of the method is negligible. 

N O M E N C L A T U R E  

A Generalized gain factor 
A c Critical value of A 
a Thermal diffusivity 
b2, c2 Lyapunov coefficients 
K Controller gain 
k Wavenumber 
q Heat flux 
R Heater resistance 
S Heater surface area 
T(x, t) Difference between specimen and thermostat temperatures 
t Real time 
Uo Reference voltage 
Ul, u2 Voltage 
x Coordinate 
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X 0 

o" 

60 

Thermocouple coordinate 
Thermo emf factor 
Specimen thickness 
Relative deflection of A from Ao 
Thermocouple normalized coordinate 
Thermal conductivity 
Temperature wave phase delay through the whole specimen 
Auto-oscillation amplitude 
Heaviside step function 
Normalized time 
Spatial part of phase 
Frequency 
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